

Course Name :

Advanced Simulation Process

Course Duration : 24 Hrs.

Course Overview

- Course Description
 - Advanced Simulation Processes and Solutions introduces the finite element modeling and analysis tool integrated in NX.

• Intended Audience

• It is intended for design engineers and analysts who want to learn the details of how to do finite element analysis on NX models.

• Prerequisites

- <u>Education</u>: Diploma completed or Degree 2nd year completed in any one of following Streams.
 - Aeronautical, Automobile, Civil, Industrial, Marine, Mechanical, Mechatronics, Metallurgy, Production and Manufacturing Engineering.
- <u>Software</u>:
 - The Essentials for NX Designers class, or in self-paced training: Essentials – NX Basics and the CAD Foundation courses.
 - Working knowledge of NX Modeling. Basic understanding of finite element analysis principles.

Course Objective

 Objective of this course is to covers the details of the FEA processes from preparing a model, meshing, applying boundary conditions, solving, and post-processing the results, and covers applications of various analysis types, contact analysis, durability, and optimization.

• Course Contents

- Analyzing a model
 - Introduction to Advanced Simulation
 - Working with Advanced Simulation
 - Selecting entities
 - Basic meshing techniques
 - Boundary conditions
 - Boundary condition techniques
 - Using fields in boundary conditions
 - Solving
 - Post-processing
 - Reports
- \circ Preparing the geometry
 - Geometry idealization
 - Geometry abstraction
 - Synchronous modeling
 - Geometry repair

SIEMENS CENTRE OF EXCELLENCE

- Mesh collectors
- Material and physical properties
- Element size and mesh density
- Beam modeling
- Connecting meshes
- Bolt modeling and pre-loads
- 3D swept meshing
- Manual meshing
- Mesh quality
- Advanced Simulation solutions
 - Modal analysis
 - Response Simulation
 - Thermal analysis
 - Buckling analysis
 - Contact and gluing
 - Symmetry
 - Assembly FEM
 - Nonlinear static analysis
 - Geometry optimization
 - Superelements
 - Flexible body analysis

