L. D. College of Engineering, Ahmedabad – 15

LESSON PLAN

Over all Term Planning				
Branch:	Information Technology			
Semester:	B.E 3 RD SEM			
Subject Name:	Digital Electronics			
Subject Code:	2131004			
Affiliating University:	Gujarat Technological University			
Starting date of the term:	18-06-2018			
Ending date of the term:	17-10-2018			
Course Teacher:	Prof. N. P. Desai			

University Structure of the subject:

Теа	ching Scho	eme	Credits	Examination Marks				Total		
L	Т	Р	С	Theory Marks				Practical N	1arks	Marks
				ESE PA (M)		ESE	E (V)	PA		
				(E)	PA	ALA	ESE	OEP	(1)	
4	0	2	6	70	20	10	20	10	20	150

L- Lectures; T- Tutorial/Teacher Guided Student Activity; P- Practical; C- Credit; ESE- End Semester

Examination; PA- Progressive Assessment;

Sr No	Contents	Total Hours	% Weightage
1	Binary Systems and Logic Circuits: The	3	5
	Advantage of Binary, Number Systems, The		
	Use of Binary in Digital Systems, Logic		
	Gates, Logic Family Terminology.		
2	Boolean Algebra and Mapping Methods:	7	15
	Boolean Algebra, Karnaugh Maps, Variable		
	Entered Maps, Realizing Logic Function		
	with Gates, Combinational Design		
	Examples.		
3	Logic Function Realization with MSI	7	15
	Circuits: Combinational Logic with		
	Multiplexers and Decoders, Standard Logic		
	Functions with MSI Circuits, Design		
	Problem Using MSI Circuits.		

4	Flip Flops, Counters and Registers: Flip Flops and its Applications	8	15
5	Introduction to State Machines: The Need for State Machines, The State Machine, Basic Concepts in State Machine Analysis.	3	5
6	Synchronous State Machine Design: Sequential Counters, State Changes Referenced to Clock, Number of State Flip- Flops, Input Forming Logic, Output Forming Logic, Generation of a State Diagram from a Timing Chart, Redundant States, General State Machine Architecture	8	15
7	Asynchronous State Machines: The Fundamental-Mode Model, Problems of Asynchronous Circuits Basic Design Principles, An Asynchronous Design Example.	7	15
8	Logic Families: Transistor-Transistor Logic(TTL), Emitter-Coupled Logic(ECL), MOSFET Logic, TTL Gates.	4	5
9	Programmable Logic Devices: Introduction to Programmable Logic Devices, Read-Only Memory, Programmable Logic Arrays (PLA), Programmable Array Logic (PAL), Combinational PLD-Based State Machines, State Machines on a Chip.	5	10
Total		52	

Reference Books:

1. Digital Logic & State Machine Design By David J. Comer, Third Indian Edition, Oxford University Press

2. Digital Logic and Computer Design By M Morris Mano, Fourth Edition, Prentice Hall Publication

3. Digital Principles and Applications By Malvino & Leach, Seventh Edition, McGraw-Hill Education

4. Modern Digital Electronics By R.P.Jain, Fourth Edition, Tata McGraw-Hill Education.

5. Digital Electronics: Principles and Integrated Circuits By A.K. Maini, Wiley India Publications

6. Digital Design M. Morris Mano and Michael D. Ciletti, Pearson Education

7. Digital Electronics and Design with With VHDL, Volnei A. Pedroni, Elsevier (Morgan Kaufmann Publishers)

Lesson Plan	

Sr.	Торіс	Planned	Actual	Planned	Actual	Mode of	Resources
No.		Date	Date	Date	Date	Delivery	required
			((
		(Div A)	(Div A)	(Div B)	(Div B)		
1	The Advantage of Binary, Number Systems,			25/6/2018		Chalk Board/ppt	Hand Outs/ppt

2	The Use of Binary in	2/7/2018	Chalk	Hand
	Digital Systems, Logic Gates,		Board/ppt	Outs/ppt
3	Logic Family	10/7/2018	Chalk	Hand
	Terminology		Board/ppt	Outs/ppt
4	Combinational Logic	17/7/2018	Chalk	Hand
	Decoders,		Board/ppt	Outs/ppt
5	Standard Logic	30/7/2018	Chalk	Hand
	Functions with MSI Circuits,		Board/ppt	Outs/ppt
6	Design Problem	6/8/2018	Chalk	Hand
	Using MSI Circuits.		Board/ppt	Outs/ppt
7	The Need for State	14/8/2018	Chalk	Hand
	Machines, The State Machine,		Board/ppt	Outs/ppt
8	Basic Concepts in State	27/8/2018	Chalk	Hand
	Machine Analysis.		Board/ppt	Outs/ppt
9	The Fundamental-	4/9/2018	Chalk	Hand
	Mode Model, Problems		Board/ppt	Outs/ppt
	Circuits			
10	Basic Design	11/9/2018	Chalk	Hand
	Principles, An		Board/ppt	Outs/ppt
	Example.			
11	Introduction to	24/9/2018	Chalk	Hand
	Programmable Logic Devices,		Board/ppt	Outs/ppt
12	Read-Only Memory,	1/10/2018	Chalk	Hand
	Programmable Logic		Board/ppt	Outs/ppt
	Arrays (PLA), Programmable Array			
	Logic (PAL),			
13	Combinational PLD-	15/10/2018	Chalk	Hand
	Based State Machines, State Machines on a Chin		Board/ppt	Outs/ppt
1	state machines on a chip.			

Lab Planning

Sr.	Exercise Title	Planned date of	Equipment's	Materials	Rema
No.		performance	Required	Required	rks
1	AIM: To study about various Basic Gates and other Gates.				
2	AIM: Configuring NAND and NOR logic gates as universal gates.				
3	AIM: To Prove De Morgan's Theorem using				

	Truth Tables.		
4	AIM: To implement Binary to Gray and Gray to Binary Code Converter.		
5	AIM: To Study and configure various digital circuits such as Half adder, Full adder, half subtractor and Full subtractor.		
6	AIM: To Study and configure Decoders & Encoders		
7	AIM: To Study and configure MUX and DEMUX.		
8	AIM: To study & verify SR and D – Flip Flops with Truth table		
9	AIM: To study & verify JK and T – Flip Flops with Truth table		
10	AIM: To study & implement Magnitude Comparator.		
11	AIM: To study Simulator and its components		
12	AIM: To study and configure Register & Counter.		

Prof. N. P. Desai

Department of Information Technology

L. D. C. E. – Ahmedabad-15