Report on Online Kaizen 2021 Chemical Engineering Department L. D. College of Engineering-Ahmedabad

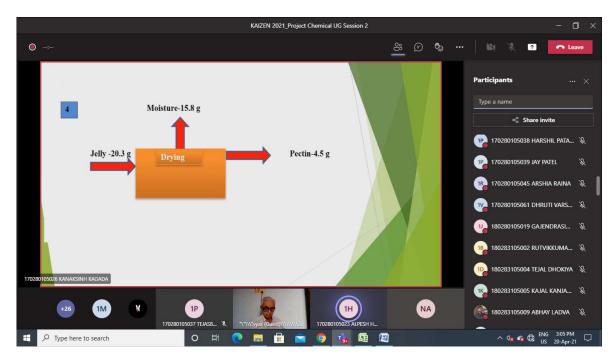
<u>1. Brief Description of the event:</u>

The online Kaizen 2021 for Chemical Engineering Department was conducted on 19th and 20th April 2021 for reviewing 15 teams of final year IDP/UDP projects (total 70 students) and 10 PG dissertation projects. The projects were evaluated by experts from Industry and Professor from other university accompanied by internal evaluators from the institute. Event was conducted on MS Teams from 11:00 am to 4:00 pm. The schedule is given below:

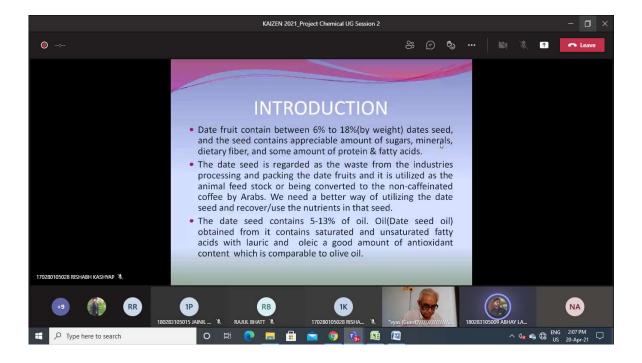
SR. NO.	ENROLLMENT	PROJECT TITLE	GUIDE NAME			
	170280105039					
1	170280105046	Nanotechnology in self-cleaning Application	Prof. C. G.			
	170280105057		Bhagchandani			
	170280105062					
	170280105055					
	170280105034	Major Engineering Problem in Solvent Recovery	Prof. S. M. Dutta			
2	170280105029	in Distillation Unit				
	180283105006					
	170280105035					
	170280105014		Prof. T. S. Rajaraman			
3	170280105012	Synthesis of black TiO2 for visible light photo				
5	170280105013	catalysis				
	170280105011					
	170280105036					
	170280105060	Synthesis of furfural from bagasse for lube oil	Prof. N. J. Ambegaonkar			
4	170280105058	treatment				
	170280105040	treatment	Annoegaonkai			
	170280105050					
	180283105014					
	170280105061	Production of Hydrogon and Passyary of	Prof. P. B. Patel			
5	170280105045	Production of Hydrogen and Recovery of Aluminium from Waste Aluminium				
	170280105001					
	170280105002					
	170280105024					
	170280105043	Design internal / External cooling system for				
6	170280105005	diazotization batch reactor to reduce ice Prof. P.				
	170280105004	consumption				
	170280105051					

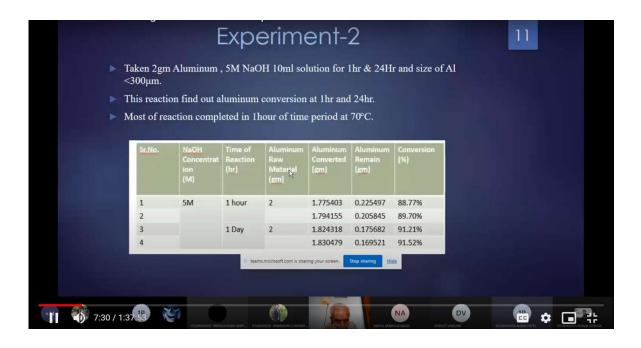
DATE: 19/04/2021 (DAY 1) GROUP I : FINAL YEAR B.E., CHEMICAL NAME OF JUDGE: Shri M. N. Vyas (Ex.GM-IPCL)

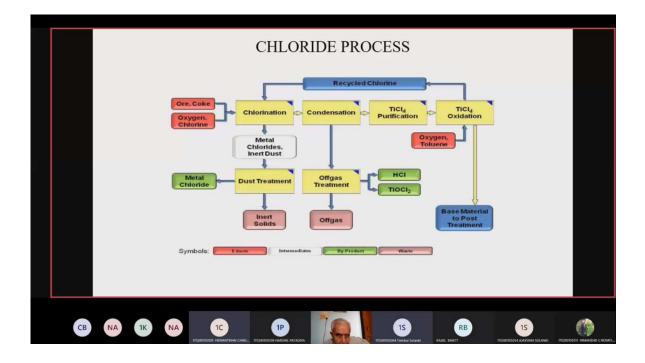
	170280105053				
	170280105038				
7	170280105044	Acetylene conversion optimization	Dr. S. R. Shah		
	170280105047				
	170280105054				
8	170280105064		Prof. R. P. Bhatt		
	160280105007	Manufacturing of Titanium dioxide (TiO2)			
	170280105009	Manufacturing of Titanium dioxide (1102)	PIOI. K. P. Dilau		
	170280105017				

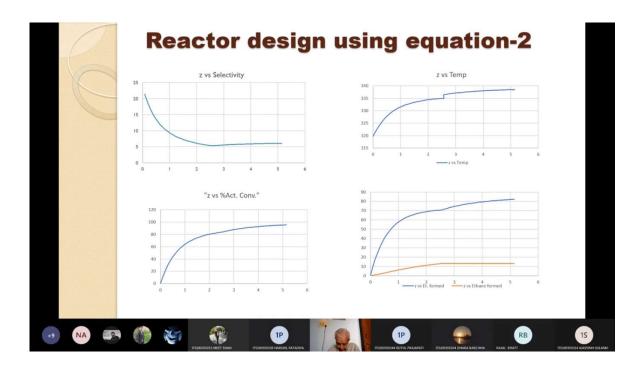

DATE: 20/04/2021 (DAY 2) GROUP II : FINAL YEAR B.E., CHEMICAL NAME OF JUDGE: Shri M. N. Vyas

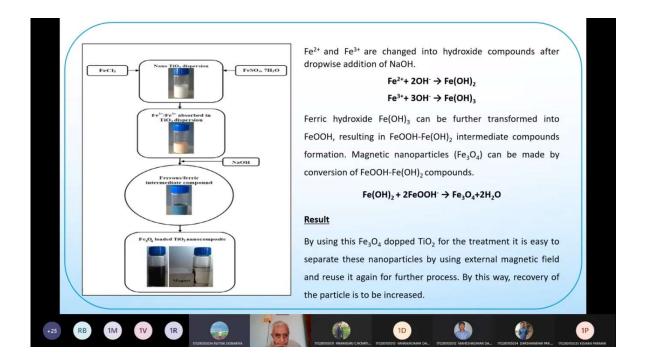
SR. NO.	ENROLLMENT	PROJECT TITLE	GUIDE NAME			
	170280105041					
	180283105008	Madalling and simulation of distillation	Prof. R. R. Patel			
9	170280105018	Modelling and simulation of distillation column by using MATLAB				
	180283105017	column by using WATLAD				
	180283105012					
	170280105015					
10	170280105031	Biodisel production by using nanocatalyst	Prof. H. N. Pandya			
10	170280105052	Biodiser production by using hanocataryst	1 101. 11. IN. Falluya			
	170280105059					
	170280105025					
11	170280105027	Solar Refrigeration system	Prof. A. N. Vaghela			
11	170280105063	Solar Kenigeration system				
	170280105003					
	180283105002					
	180283105003		Prof. S. M. Dutta			
12	180283105011	Fertilizer driven forward osmosis				
	180283105013					
	180283105016					
	170280105028					
	180283105015	Extraction and characterization of oil from date	Prof. P.B.Patel			
13	180283105009	seed				
	170280105020	seed				
	170280105021					
	170280105006					
	170280105007					
14	170280105022	Manufacturing of Polypropylene	Prof. R. S. Ruperi			
	170280105048					
	180283105004					
	170280105037					
	170280105023	Extraction and characterization of vitamin from Prof. C.				
15	170280105026	fruit peel	Prof. C. G. Bhagchandani			
	170280105032	nun peer				
	180283105005					

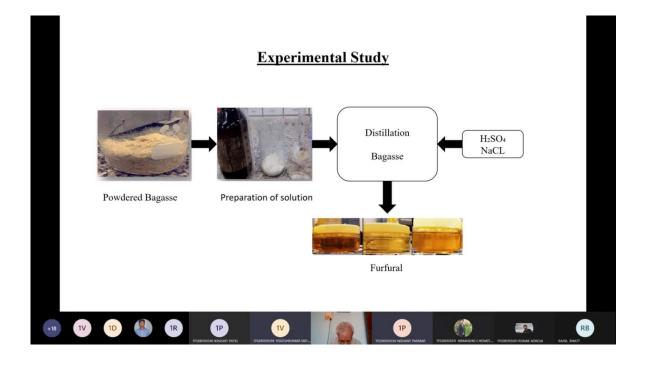

DATE: 20/04/2021 (DAY 1) GROUP III : FINAL YEAR M.E. CHEMICAL (CAPD) NAME OF JUDGE: Dr.Dharamshi Rabari(Professor, Ahmedabad University)


Sl. No.	Enrollement No	Project Title	Project Guide Name
1	190280716004	Graphene Oxide : Synthesis and It's Application	Prof. Nikita Ambegaonkar
2	190280716005	Forward osmosis: a potential way to treat wastewater	Prof. S. M. Dutta
3	190280716009	Development of novel organo Ruthenium drugs for cancer therapy	Dr. Paresh Rana
4	190280716014	Exergy analysis of bio-butanol reforming processes integrated with pemfc	Prof. Ronak R. Patel
5	190280716015	To study various reaction parameters in OBR	Prof. Rajul P. Bhatt
6	190280716016	Techno economical analysis of geothermal solar cold storage system	Dr. Sachin Parikh
7	190280716017	Hydrogen production from waste aluminium and utilization of by product	Prof. Pratik B. Patel
8	190280716019	Green solvent application and prediction of VLE data for Chemical Industries.	Dr. Satish R. Shah
9	190280716020	Modified TiO ₂ based photo catalyst for pollutant degradation in wastewater	Prof. T. S. Rajaraman
10	190280716021	Enhanced oil recovery using nanoparticles	Dr. Sachin Parikh

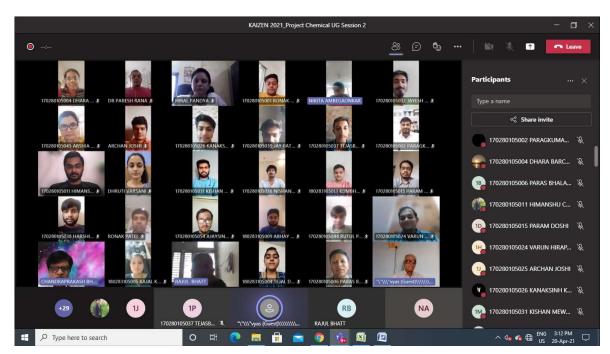

Here are some screenshots of the online kaizen 2021 through MS Teams.

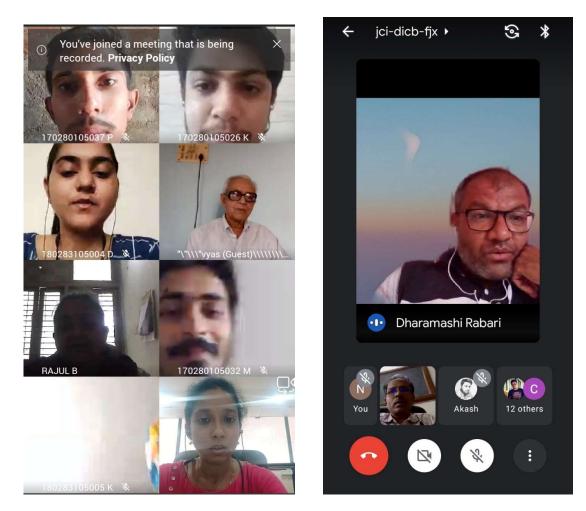

Presentation of students:





				Final project - Exce	4			Harin Pat	oliya 🏠	B -	
File Hon	ne Insert	r Page Layout Formulas Data Review View Help	Tell me what you want to								A Share
Clipboard	ry – mat Painter d	$ \begin{array}{c c} Calibe & \cdot & 11 & \cdot & \vec{K} & \vec{K} \\ \hline Calibe & \cdot & 11 & \cdot & \vec{K} & \vec{K} \\ \hline B & I & U & \cdot & 0 & \cdot & \Delta \\ \hline B & I & U & \cdot & 0 & \cdot & \Delta \\ \hline Fort & 5 & Alignment \\ \hline \end{array} $	Merge & Center -	95 1 12 21	Conditional Format as Cell Formatting - Table - Styles - Styles	Insert Delete Forma Celh	/ Clear -	Sort & I Filter - S			~
E28	- 3 0	k y [*] ∫ _F =€27/1000									
	В	c	D	E	F	G	н	1	1	K	
16 17	Step:1										
18	Julip . a										
19		Let we have to reduce ice consumption by				0%					
20		Mass of ice reduced(m)				100 Kg					
21		Volume after reducing ice(V _i)			4.	.84 m ³					
	Step:2	HEAT DUTY CALCULATION:									
24											
25		Latent heat of ice(\lambda)		336000	J/Kg						
26		Heat Duty	Q=m*λ	268800000							
28		Heat Duty	Q-III A	268800							
29		We have to remove 268800 KJ heat from reactor mixture in 1.5 h	r	0							
30											
81 32	Step:3	Data For Brine Solution(16%): (Cold stream)									
32		Temp, T (inlet)	-15	5 6	Density of Brine Solution (p)	1102	Kg/m ³				
34		Temp. T (outlet)			Specific Heat Capacity (Cp)		J/Kg-*C				
35					Viscosity(µ)	0.001388	Pa.s				
36					Thermal conductivity (k)	0.583	W/m.K				
37		Hot Stream						and the second	-	-	-
39		Inlet Temp	5	°C	Density of Solution (p)	1086.78	Ke/m ³	•	KAIZEN 207	1 Project	5244 -
40		Outlet Temp		*C					10	and the second s	
11										-	
12								-	4	-	
13										100	
1.1	Sheet1	(+)			1.6				1	• w •	
Ready											+ 1004
۹ ۵	0	H 🐂 🧕 🖬 🍓 🗿 🚺	4 C				28%	001		14 ENG 19-04	-2021
			and the second second	14							
	6			76							6
112	100		1B			A PAL			N	A	





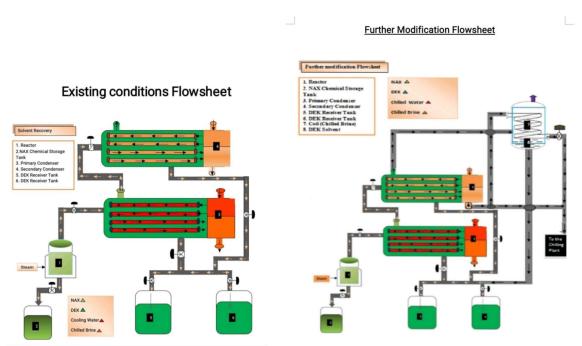
Group Photo with students, expert and faculties:

Expert- Student Interaction:

Faculty Expert Interaction:

2. Brief Detail of innovative projects having good industry/societal impact

(1) <u>Name of project</u>: Major Engineering Problem in Solvent Recovery in Distillation Unit(UG)


<u>Abstract</u>: In the agrochemical industry, solvent recovery of DEK from the mixture of DEK and NaX, by increasing the condensation rate. That will improve the economy level of that industry and that is environment friendly also.

Team members:

1.Sonigra Nayan 2.Parmar Darshan 3 Mahaliya Rohit 4.Parmar Kishan 5.Kateshiya Vrajlal **Guided by:**

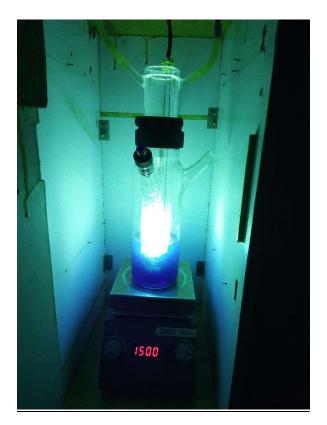
> Prof. S. M. Dutta Associate Professor Chemical Engg Dept-L.D.C.E.

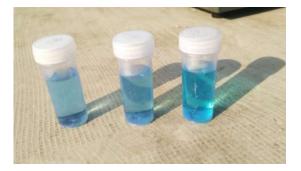
Photos of the projects :

(2) <u>Name of project</u>: Synthesis of black TiO₂ for visible light photo catalysis

Abstract: Photo catalysis has been considered a potentially promising approach for renewable energy and environmental remediation with abundant solar light. We hereby propose to utilized the synthesized black TiO2 for various application in context with environmental remediation via photo catalytic degradation. So, self-cleaning occurs in visible light also and maximum UV radiation absorption occurs in synthesized TiO2.

Sunlight also have source of UV light in 5-6%, so by using a sunlight this model is also work on that way


.. <u>Team members:</u>


1.Dobariya Rutvik 2.Chovatiya Himanshu 3.Dabhi Mahesh 4.Damor Vanraj

Guided by:

. Pro.T.S.Rajaraman Assistant professor Chemical Engg Dept-L.D.C.E.

Photos of the project:

(3) <u>Name of project</u>: Evaluating Performance of Inorganic Fertilizers as Draw Solute in Fertilizer Driven Forward Osmosis for Wastewater concentration(UG)

<u>Abstract:</u> Forward osmosis (FO) is a novel and emerging low energy technology applied for the desalination of saline water and concentration of wastewater. FO process utilizes the osmotic pressure difference induced by the solute concentration difference between the feed and draw solution separated by a selectively permeable membrane. This work focus on performance of inorganic fertilizer such as Ammonium Sulphate, Magnesium Sulphate, Potassium Chloride as draw solutions for drawing pure water from waste water by using a thin film composite (TFC) membrane. The dilute draw solution generated can be used as a fertilizer solution and can be applied for drip irrigation (fertigation). Performance parameters like water flux, reverse permeation and a suitable draw solute recovery process is studied for possible commercial application.

Team members:

Rutvikkumar Bhatiya
Bhavsar Yash V.
Pandya Jatin G
Pankhaniya Kumbhan N.
Patil Mitesh P.

Guided by:

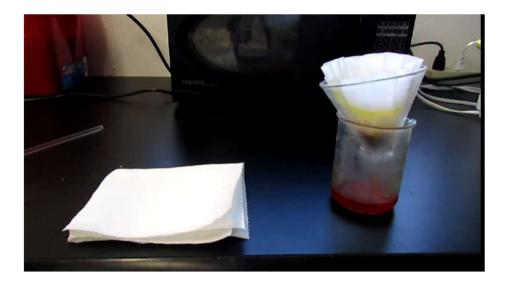
Prof. S.M. Dutta Associate professor Chemical Engg Dept L.D. College of. Engineering.

Photos of the project:

(4) Name of project: Development of novel organo ruthenium drugs for cancer (PG)

Abstract:

The quest for an anticancer agent that is less toxic and is highly selective continues. It turns out that ruthenium compounds offer the advantages of not being very toxic and being very selective for cancer cells. As cancer cells overexpress transferrin receptors to satisfy their increased demand for iron, ruthenium-based drugs (containing the iron homologue ruthenium) may be delivered more efficiently to cancer cells. In this paper two novel ligands naming: 6- phenyl-2,3- bis((4-(pyridin-2-yl)-1H-1,2,3-triazol1-yl)methyl)quinoxalineand6-(4fluorophenyl)-2,3-bis((4-(pyridin-2-yl)-1H-1,2,3-triazol-1yl)methyl)quinoxalinewiththeir rutheniumcomplexesnaming:6-phenyl-2,3-bis((4-(pyridin-2yl)-1H1,2,3-triazol-1yl)methyl)quinoxalineRu(II)-pcymene complex and 6-(4fluorophenyl)-2,3-bis((4- (pyridin-2- yl)- 1H-1,2,3-triazol-1-yl)methyl) quinoxalineRu(II)-pcymene complex respectively, havebeen synthesized and characterized by 1H NMR and IR spectroscopy.

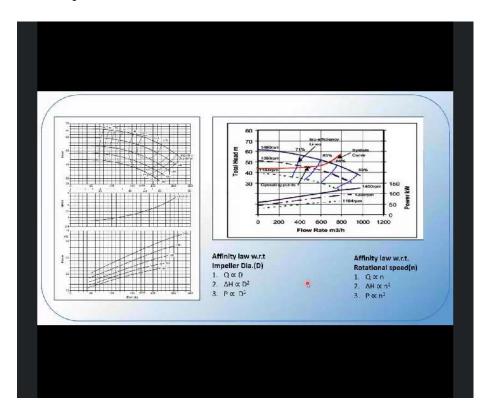

Team members:

1. Nisha Devi

Guided by:

Prof. P.H.Rana Professor & Head Chemical Engg Dept L.D. College of. Engineering.

Photos of the project:



3. Continuous evaluation:

Chemical engineering department has organized mid sem internal review for BE Final projects for expert review on their work progress. Main aim of this was to give proper directions to the students in their project work. This evaluation helped the students to overcome their difficulties, to build up confidence, to improve presentation and communication skills. This can prepare students for their final presentation. Newer ideas or modifications suggested by the internal reviewers can provide them a new path of working and all the suggestions can be incorporated in the final presentations.

Four panel of faculty members and students was created and their online presentation was arranged. A presentation was scheduled in the month of April and their project works were presented by the students. Important suggestions, modifications, presenting skill related tips, presentation making tips, confidence building tips etc were given to the students. This has helped students in many ways.

Screenshots of the presentation:

4. Feedback:

(A) Feedback from the faculty members:

All the faculty members shared their valuable feedback regarding the Online kaizen event 2021. According to all the faculties, efforts given by students were commendable in this tough situation. Students have tried their best to come up with newer idea in this situation as

well and their hard work has paid them well. Presentation skills and communication skills can be improved through this event which boost the confidence in students, as agreed by all the teaching members.

As commented by senior faculty, Prof C G Bhagchandani, Innovative approach for the existing practise/ technology was the most important insight of the event and he really appreciated the young minds exploring the newer and innovative techniques for the existing practise/ processes which can be implemented in industries as well. According to him, cost analysis was area for improvement as cost estimation helps to implement the innovative idea into reality.

Another faculty from the department, Dr S M Dutta, counted this event as an excellent event where students can showcase their innovative ideas through their project work in front of the expert and they can get an idea, where they are standing and improve themselves. He really considered the panel discussion and question- answer session as important one as in this session only important comments from experts can benefit the students and a new path can be observed for advanced work.

(B) Feedback from the experts:

Both the experts Shree M N Vyas and Dr Dharamshi Rabari found this Kaizen event very good and technically sound event. It has provided a good platform the students to display their ideas through their project work. They both agreed on the point that, projects were innovative and few were having really good potential to work upon in future and can be implemented in real life.

(C) <u>Feedback from the students:</u>

All the final year and prefinal year students enjoyed the presentations and they came across many recent advances in the field of chemical engineering. They enjoyed presentation of all students and highly rated this event. They really liked the question-and-answer session and through this session they came to know about many new things.

Kashyap Rishabh, final year student, admired the important points suggested by the expert. He said that, expert highlighted the exact point where being students, we faced problems. He also considered the points suggested by expert as very relevant and important. Kashyap also suggested that the presentation of their project work should be accessible to other people also. Another student named Dhruti Varsani said that the expert was very much involved in all the projects and helped them to unfold new aspects of the projects and helped learning new things. She would recommend this event to others as well.

All the prefinal year students were also exposed to the project work and they valued all the projects. They enjoyed this online event but preferred this to be as offline one for better and deeper understanding of the work.